# Penetracion por provincia: accesos cada 100 hogares
<- read_csv("https://datosabiertos.enacom.gob.ar/rest/datastreams/275028/data.csv",
pen_prov_hog n_max = 24,
locale = locale(decimal_mark = ","))
<- pen_prov_hog %>%
pen_prov_hog_plot ggplot(aes(x = reorder(Provincia, `Accesos por cada 100 hogares`),
y = `Accesos por cada 100 hogares`,
text = Provincia)) +
geom_col(data=pen_prov_hog, aes(x=reorder(Provincia, `Accesos por cada 100 hogares`)), fill = "red") +
coord_flip() +
theme_bw() +
theme(axis.text.y = element_text(size = 6), axis.title = element_blank())
ggplotly(pen_prov_hog_plot, tooltip = c("text", "y"))
It is possible to make a dashboard with basic data on fix access in Argentina very quickly (about 30 minutes), with open data from ENACOM, open source tools (in this case R, Plotly and Flexdashboards but there are many others) and deploy it online for free with Github Pages.
Here you can see the dashboard online (in Spanish): https://martinolmos.github.io/tablero_accesos_fijos/
And the code to acquire the data and generate the visualizations:
Fixed Accesses per 100 Households by Province
Evolution of Accesses per 100 people
# Penetración: accesos cada 100 habitantes. Serie histórica
<- read_csv("https://datosabiertos.enacom.gob.ar/rest/datastreams/281491/data.csv",
pen_nac_hab_serie locale = locale(decimal_mark = ","))
<- pen_nac_hab_serie %>%
pen_nac_hab_serie_plot ggplot(aes(x = fct_reorder(Periodo, paste0(Año, Trimestre), .desc = FALSE),
y = `Accesos por cada 100 hab`,
text = Periodo)) +
geom_point() +
geom_line(aes(group = 1)) +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8),
axis.title = element_blank())
ggplotly(pen_nac_hab_serie_plot, tooltip = c("text", "y"))
Evolution of the Average Download Speed
# Velocidad Media de Descarga (Mbps) - Nacional
<- read_csv("https://datosabiertos.enacom.gob.ar/rest/datastreams/275016/data.csv", col_names = c("Año", "Trimestre", "Velocidad Media de Descarga", "Periodo"), skip = 1,
vmd_nac_serie locale = locale(decimal_mark = ","))
<- vmd_nac_serie %>%
vmd_nac_serie_plot ggplot(aes(x = fct_reorder(Periodo, paste0(Año, Trimestre), .desc = FALSE),
y = `Velocidad Media de Descarga`,
text = Periodo)) +
geom_point() +
geom_line(aes(group = 1)) +
labs(y = "VMD en Mbps") +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8),
axis.title.x = element_blank())
ggplotly(vmd_nac_serie_plot, tooltip = c("text", "y"))
Evolution of Fix Accesses by Technology
<- read_csv("https://datosabiertos.enacom.gob.ar/rest/datastreams/275029/data.csv",
tec_nac_serie locale = locale(decimal_mark = ","))
<- tec_nac_serie %>%
tec_nac_serie select(-Total) %>%
gather(Tecnología, Accesos, ADSL:Otros)
<- tec_nac_serie %>%
tec_nac_serie_plot ggplot(aes(x = fct_reorder(Periodo, paste0(Año, Trimestre), .desc = FALSE),
y = Accesos,
group = Tecnología,
color = Tecnología,
text = Periodo)) +
geom_line() +
scale_y_continuous(labels = c("0", "2M", "4M", "6M")) +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, hjust = 1, size = 8),
axis.title = element_blank(),
legend.title = element_blank())
ggplotly(tec_nac_serie_plot, tooltip = c("text", "color", "y")) %>%
layout(legend = list(title = "",
orientation = "h",
y = 1.3))